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The Stokes force on a fluid droplet is obtained when the droplet is placed in an 
unbounded fluid medium and motion ensues due to an arbitrary interfacial-tension 
gradient on the droplet surface. The force, derived here for a spherical droplet, is 
proportional to the integral of the interfacial-tension gradient over the droplet 
surface. It may be calculated without solving the complete governing equations from 
a knowledge of this integral and the ratio of the viscosity of the droplet phase to that 
of the contihuous phase, as shown in the principal result displayed in (29). 

When the interfacial-tension gradients are caused by temperature or concentration 
variations, the result for the force may be further specialized when convective 
transport effects are negligible. In  this case, it is possible to express the force in terms 
of the gradient of the undisturbed temperature (or concentration) field evaluated a t  
the location of the droplet centre in a form analogous to Fax6n’s force law. 

1. Introduction 
The variation of the interfacial tension along a fluid-fluid interface will result in 

a tangential stress discontinuity across the interface. The normal consequence is the 
motion of the fluids present on either side of the interface. Since the interfacial tension 
depends on the temperature, species concentration, and the electrical charge density 
at the interface, a gradient in any one of these entities can cause fluid motion. 

When a droplet of one fluid is placed in a second fluid, and conditions exist which 
produce a non-uniform interfacial-tension distribution on the droplet surface, the 
droplet will experience a hydrodynamic force. It is useful to be able to calculate this 
force without recourse to the full solution of the governing equations, if possible. This 
is the quest of the present article. 

It is worthwhile to point out that some results are available for the direct calcu- 
lation of the hydrodynamic force on a spherical object placed in an unbounded 
fluid under conditions of Stokes flow. For instance, Faxh’s  (1924) relations permit 
the calculation of the force and torque on a rigid sphere placed in an unbounded 
arbitrary Stokes flow. For a rigid object, of course, interfacial tension is not a relevant 
quantity. In  the case of a sphericalPuid droplet of radius a, translating at a velocity 
U in an unbounded arbitrary Stokes flow u, (r) under conditions when the interfacial 
tension is uniform, Hetsroni & Haber (1970) obtained similar results using a full 
spherical harmonics solution (here, r is the position vector). Later Hetsroni, Wacholder 
8z Haber (1971) employed the reciprocal theorem of Lorentz (Happel & Brenner 1965) 
together with a spherical harmonics solution to obtain the same result. In this case, 
the hydrodynamic force is given by 

2+3a  aa2 
1 + a [ F = 2xpa - U+ 2(2 + 3a)  
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Here, p is the viscosity of the continuous phase, and a is the ratio of the viscosity 
of the droplet phase to that of the continuous phase. The subscript 0 refers to 
evaluation at the location of the droplet centre. The same equation, excluding 
translation, was derived more recently by Rallison (1978) who used an elegant 
alternative approach. It may be noted that (1) contains the rigid-sphere case aa the 
asymptotic limit, a-+co. 

Returning to the influence of interfacial-tension gradients on droplets, Young, 
Goldstein & Block (1959) pointed out that a fluid droplet placed in a thermal gradient 
environment will experience a force due to capillarity. The interfacial tension will 
typically be a minimum at the warm pole of the droplet, and will increase toward 
the cooler pole. The resulting tangential stress will drag the neighbouring continuous- 
phase fluid toward the cooler pole, and the reaction on the droplet will therefore be 
in the opposite direction. If the droplet is free to move, it will migrate toward warmer 
regions as a consequence. Young et al. demonstrated the phenomenon by applying 
a downward thermal gradient on gas bubbles introduced into a vertical liquid column. 
They were able to arrest the buoyant rise of the bubbles, and move them downward 
by applying a sufficiently large thermal gradient. In fact, under conditions of Stokes 
flow, a gas bubble approximately 20 pm in diameter will experience the same force 
due to a 1 K/mm temperature gradient as due to buoyancy in a Dow Corning DC200 
silicone oil, a result independent of the viscosity of the fluid. At sizes down to 1-5 pm, 
capillarity can dominate over both gravity and Brownian motion in governing the 
migration of bubbles and droplets. 

In addition to performing experiments, Young et al. also solved the theoretical 
problem of a fluid droplet placed in an unbounded fluid possessing a uniform thermal 
gradient in the undisturbed state. They assumed negligible convective transport of 
momentum and energy and constant physical properties, and therefore solved the 
Stokes and Laplace’s equations for the velocity and temperature fields respectively. 
In the tangential-stress balance, the interfacial tension was assumed linear in 
temperature. The spherical shape is preserved under the above assumptions. From 
results given by Young et al., one can obtain the hydrodynamic force exerted on a 
stationary droplet due to capillarity-induced motion in the surrounding fluid (after 
correcting some minor typographical errors in their paper), 

Here, cr’ = da/dT is the gradient of the interfacial tension with temperature, a is the 
droplet radius, and /3 is the ratio of the thermal conductivity of the droplet phase 
to that of the continuous phase. a has been defined earlier. Note that the result 
presumes that VT, is a constant vector field. It will be shown later that (2) is a special 
case of the more general results derived in the present work. 

Additional literature on capillarity -induced migration of droplets and bubbles is 
discussed elsewhere (Subramanian 1981, 1983) and will not be reviewed here. 

In what follows, constant physical properties are assumed with the exception of 
the interfacial tension a. This quantity is permitted to vary with position on the 
droplet surface. 

The symbols employed for the droplet phase are distinguished from those for the 
continuous phase by a caret. Initially, the Reynolds number for the flow in the 
continuous phase is assumed negligible. In the latter part of the development, it will 
become necessary to require this in the droplet phase as well. Thus, the velocity fields 
u(r) and a(r) both satisfy Stokes equations. The symbols n(r) and #(r) are used for 
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the corresponding stress tensor fields, in which, by convention, the pressure is taken 
to be the hydrodynamic pressure (Happel & Brenner 1965). One exception is made 
to this convention, and is noted in the text where it appears. 

2. A variant of the Lorentz reciprocal theorem 
In order to arrive at the required result, it  is necessary to use the Lorentz reciprocal 

theorem. According to  this theorem, if (vl, lcl) and (v2, 1c2) are the velocity and the 
hydrodynamic stress fields corresponding to any two Stokes flows of the same fluid, 
and a surface S completely encloses an arbitrary region R occupied by the fluid, 

n n 

Here, dS is the usual directed area element oriented in the direction of the normal 
pointing outward from the region R. 

If the region R is taken to be bounded by the surface of the droplet and an 
arbitrarily large spherical boundary in the continuous-phase fluid, a useful version 
of the above result may be obtained. In  an unbounded quiescent fluid, at large 
distances r from the droplet, the velocity field v is O(l/r) while 1c is O(i/r2). Brenner 
(1963) used this fact to show that (3) reduces to 

dS.x,*Vl = dS.nl*v2 (4) 
JS, I s d  

in this situation. Here, S, is the surface of the droplet and dS is redefined so that 
it points into the continuous-phase fluid. This result is independent of the boundary 
conditions used at the surface s d ,  and is equally valid for a rigid body or a fluid 
droplet, stationary, or in quasi-static motion. The only condition imposed in addition 
to creeping motion is that the fluid at infinity be quiescent. 

The next step is to obtain a version of the reciprocal theorem which is useful here. 
For this, consider a j u i d  droplet held fixed in an unbounded continuous-phase fluid 
which is quiescent at infinity. Let two Stokes fields (vl, lcl) and (v2, z2) be induced 
by capillary effects resulting from interfacial-tension gradients V, a,(r) and V, a2(r) 
respectively (on the droplet surface S,). Here V, is the surface gradient operator. In 
this situation, since the fluid at infinity is quiescent, (4) is applicable. 

The stress balance at the droplet interface in each problem reads7 

n . z =  n-d-Vscr+2uHn on 8,. (5)  

Here, n is the unit normal and H the mean curvature at any point on S,. 
The velocity field v is tangent to the surface S, everywhere on it. It is also 

continuous across it (that is, v = 8 on Sd). These facts make i t  possible to obtain the 
following result from (5 ) ,  

dS-1c2*vl = - V , a 2 - v 1 d S + d S . d 2 ~ 8 ,  on S,. (6) 

Here, dS = IdSl. Substitution of (6), and an analogous result wherein the subscripts 
1 and 2 are interchanged, into (4) leads to 

n n 

t Strictly, 1~ and rf in (5) stand for the complete streas tensors, including hydrostatic contribu- 
tions in the presence of body forces. However, this distinction becomes irrelevant in the transition 
to (6). 
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However, 8, completely encloses the droplet phase, and the Lorentz reciprocal 
theorem may be directly applied to the droplet phase to obtain the equality of the 
second members of the left- and right-hand sides of (7). Thus, the following analogue 
of the reciprocal theorem is obtained for capillary problems, 

r r 
J V,u,.v,dS = V,cr,.~,dS. 
s d  J s d  

Note that, up to this point, the shape of the droplet has been permitted to be arbitrary, 
and no restrictions have been imposed on the interfacial-tension gradient distribution 
except that V, u exist and be continuous on 8,. 

3. The Stokes force on a spherical droplet 
Brenner (1964b) used (4) which he had developed earlier, in (1963), to extend 

PaxBn’s laws to a rigid body of arbitrary shape placed in an arbitrary unbounded 
Stokes flow. In doing so, he obtained several useful intermediate results. One of them, 
when specialized suitably, gives the hydrodynamic force exerted on an object of 
spherical shape at  whose surface an arbitrary velocity field v exists, provided the 
surrounding fluid (of viscosity p )  is quiescent at  infinity: 

(9) 

Here, a is the radius of the sphere, and S, its boundary. Again, the result is equally 
valid whether the object within the spherical boundary S, is rigid or fluid. 

It is interesting to note that (9) can be obtained by the application of the reciprocal 
theorem to two Stokes flows, over a spherical boundary S,, one of which encloses a 
rigid solid translating at a constant velocity, and the other, aJluid droplet with an 
arbitrary velocity field on S,. 

A digression concerning the shape of the droplet is in order. In  practice, as a 
consequence of the non-uniform normal stress imbalance a t  the interface, a fluid 
droplet will assume a non-spherical shape in the problem under consideration. 
However, in creeping motion induced by capillary effects, the variation in curvature 
will be O(Aa/a) where Au is the variation of the surface tension over the boundary 
of the droplet. Thus, if Au/u, which serves the role of a capillary number in this 
problem, is small compared to unity, a spherical shape may be assumed for the droplet 
without introducing gross errors. This assumption is made from here onward in order 
to make further progress. It might be added that Brenner (1964 b) provides a result 
for the force on arbitrary-shaped objects as well, and it might be possible, with a 
creative application of that result, to calculate the force on a droplet of arbitrary, 
but given, shape. 

4. Expression of the force in terms of an arbitrary V,a  on the droplet 
surface 

The next logical step is to use (8) and (9) together to obtain the hydrodynamic force 
exerted on a stationary spherical fluid droplet when V, c is known on its surface. For 
this, let 

Vsu1 = A - ( n . A ) n ,  (10) 
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where A is an arbitrary, but constant spatial vector defined on S,. Since u2 is tangent 
to Sd, (8) may be rewritten, taking (9) into account, as follows: 

2a 
- -&*A = Jsa V,CT,.U,~S. 

3P 

Note that, from here on, we shall assume 8, E S, = surface of a spherical fluid 
droplet of radius a. 

Now, inspired by Brenner (1964u), a second-rank tensor ‘velocity’ field V,, an 
associated vector ‘pressure’ field P,, and a third-rank (triadic) ‘stress’ tensor field 
II, are defined aa follows. 

V, = V,*A, p ,  = P;A, n, = II, * A .  (1% b,  c) 

Similar fields for the droplet phme are defined in a completely analogous fashion. 
Use of (12u) in (11) leads to 

Since A is an arbitrary vector, and it will be seen shortly that V, is independent of 
A,  this yields a result for the force F,, 

= -.Js. 3p V,u,.V,dS. 

The properties of the tensor field V,, to be established shortly, will permit the 
rewriting of (14) in a form which only involves the surface gradient of u2 on S,. 

5. Calculation of the tensor fields V, and ql 
The equations satisfied by the velocity fields u1 and 6, are stated below: 

V’U, = 0, V.6, = 0, 

pV%, = Vp,,  pV26, = V$,. 

The boundary conditions are 

ul+O asr+-m, 

6, is bounded at r = 0 

on S,. I a, = 6,; n-u, = n-8, = 0, 

n*r,*t  = -A- t+n*f i ,* t  

Here, r is the distance from an origin located at  the centre of the droplet, and t is 
an arbitrary unit vector lying in the tangent plane at  any point on S,. Since the 
capillary number is assumed negligible, the balance of normal stress at the interface 
will yield a spherical shape for the droplet, and will not be considered further. 
Equations .(16c) represent the continuity of the velocity vector, the kinematic 
condition, and the tangential-stress balance a t  the interface S,. 

When the definitions in (12u-c) and analogous ones for the droplet phase are 
inserted in the above, use of the fact that A is an arbitrary vector yields the following 
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equations for the tensor fields V, and vl. From here on, for convenience, the subscript 
1 on these fields is dromed: 

(17) 

(184 

I v.v= 0 ,  v * Q =  0, 

pv2v = V P ,  pv23 = v3, 
V+O asr+co,  

vis bounded at r = 0, (18b) 

on 8,. 
V =  V; n - V = n * V = O ,  

n9llt.t  = - t + n * i V * t  , 

The fields V and 3 are independent of A. Unlike in Brenner’s work, wherein it is 
possible to eliminate dependence on ,u as well by suitable definition of P and II, this 
is not possible here. Adopting Brenner’s definitions leads to the appearance of ,u and 
,L in the tangential-stress balance. Thus, we shall use the above definitions which yield 
tensor ‘velocity ’ fields with units of velocity divided by interfacial-tension gradient. 

The third-rank ‘stress’ field n i s  given by 

n= -/P+,u[VV+t(VV)]. (19) 

In  (18c) and (19)’ standard conventions apply in defining the pre and post transpose 
of a triadic (Brenner 1964a) and / is the idemfactor. A similar result may be written 
for B. 

Recasting the tangential-stress balance in (18c) in a slightly different form reveals 
the intrinsic nature of the problem for the tensor fields V and V: 

( n . H - n . i i t ) - t  = -/at. (20) 

The ‘motion’ arising from the action of (20) is driven by a tangential ‘stress’ 
imbalance given by an ‘interfacial-tension gradient ’ which is the idemfactor. The 
analogy to Brenner’s (1964a) formulation of problems of Stokes flow past rigid bodies 
of arbitrary shape is clear. There, Brenner defines second-rank tensor ‘velocity’ fields 
arising from a ‘velocity’ tensor equal to the idemfactor at the surface of the object. 

It now remains to solve (17) and (18) for the fields V and 3. This may be done 
most conveniently by decomposition of these fields into Cartesian components. We 
may write 

where ( i J ,  k )  are the usual Cartesian base vectors. Similar results may be written for 
the fields P and and for the appropriate counterparts within the droplet. 
Substitution in (17)-(19) leads to ‘unit’ problems for each of the vector fields d’). 
As an example, the problem for u( l )  is given below: 

Here 
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and a similar result may be written for li (l). The above equations describe the physical 
problem of a droplet held fixed in an unbounded fluid with a special distribution of 
the interfacial-tension gradient. This quantity is prescribed here as the tangential 
component of a unit vector which remains constant in direction everywhere on the 
droplet surface. In this case, this unit vector is parallel to the x-direction. In fact, 
a moment's reflection will convince one that the vector components of V and V in 
any given spatial direction will satisfy a similar problem wherein the interfacial-tension 
gradient is the tangential component of a constant unit vector pointing in that 
direction. 

Defining spherical polar coordinates (r, e , $ )  centred in the droplet, if the polar angle 
O is measured from the (positive) x-direction, it is clear that the above V, CT field on 
S, will result in axisymmetric motion. The problem may be solved in a straightforward 
manner using general solutions of the Stokes equations given in Happel 6 Brenner 
(1965). Of particular interest here are the velocity components which are given below ; 
for convenience, the superscript (1) has been omitted, and the radial coordinate is - . .  
scaled by the sphere radius: 1 1  

21, = vo (;-p) COSO, 

v, is given by 

8, = vo(r2- 1) CosO, 

8, = vo(l  -22r2) sinO. 

( 2 5 4  

( 2 5 4  
a 

v, = 
3p(l +a)' 

and the viscosity ratio a has been defined earlier. A t  the surface of the droplet, r = 1, 
v, = a, = 0, and 

where the superscript (1) has been reintr0duced.t Similar results for d2) and d3) may 
be written in suitable spherical polar coordinates. Thus, one finally arrives at the 
following representation of the tensor field V on S,: 

(26) = - (v, sin 0) i,, 

22 

xy - l + y 2  yz ). (27) 
YZ -1+22 

= w = -  

Here, (2, y, z )  are Cartesian coordinates of points on S, scaled using the droplet radius, 
and, for convenience, a matrix representation is used on the right-hand side. 

6. Properties of the tensor field W on S, 
W, defined on S,, is a symmetric tensor field. Thus, at every point on S,, W 

possesses three orthogonal principal directions, and will be of diagonal form when 
represented in this privileged coordinate system at that point. It is quite straight- 
forward to establish that one of these directions is normal to the spherical surface s,, 
and hence is radial. The corresponding eigenvalue A, = 0. This means that W 
operating on spatial-vector fields defined on S, will annihilate their radial component. 

The other two eigenvalues of W are both equal to unity, A2 = A, = 1. Thus, W 

t In (26), ie is the unit vector in the 6 direction. 
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maps a spatial vector lying in the tangent plane anywhere on S, into itself. Due to 
the equality of A, and A,, there is degeneracy of the other two principal directions, 
both lying on the tangent plane. Thus, any two orthogonal directions on that plane 
may be chosen as the principal directions. It is convenient to choose these as the 8 
and q5 directions in a spherical polar coordinate system ( r ,  8, q5) centred in the droplet 
with the polar angle 8 measured from any fixed, but arbitrary, spatial direction. In  
such a system, W has an extremely simple representation: 

It is clear that W is merely a projection tensor mapping spatial vector fields defined 
on S, into their projections in the tangent plane. It is quite likely that the high degree 
of symmetry exhibited by W is due to the symmetry in the problem for V induced 
by (20). 

7. The force on the droplet 
Now, one may insert the result for the tensor field V, in terms of W from (27) into 

(14) for the hydrodynamic force on the droplet. Since W is a projection tensor, and 
Vsu already lies in the tangent plane, the inner product with W leaves this vector 
unaffected. Using the definition of vo from (25e), and finally dropping the unnecessary 
subscript 2, we obtain the following principal result from this work: 

(29 1 
1 F=-- 

2(1 +a) I,. VsadS* 

Equation (29) is worthy of some comment. First, under the stated assumptions, the 
hydrodynamic force on a droplet is independent of the viscosity of either phase, 
depending instead only on the ratio of viscosities. Second, the force is directly 
proportional to the discontinuity in tangential stress across the interface integrated 
over the drop surface. Third, the force may be calculated without solving the detailed 
hydrodynamic problem, knowing only the distribution of the Qs u field on S,. 

8. Some extensions and concluding remarks 
So far, no assumptions have been necessary regarding the cause of the variation 

of interfacial tension on the droplet surface. This variation may result from 
temperature changes around the droplet induced by a non-uniform temperature 
distribution in the continuous phase. Or, in multicomponent systems, variations in 
individual species concentrations around the periphery of the droplet can give rise 

Typically, a droplet is inserted into a continuous-phase fluid possessing some 
arbitrary, but known, non-uniform temperature or concentration field. However, the 
distribution of temperature or concentration on the interface which determines the 
function V,u may not be known. Thus, it is worthwhile to explore the possibility 
of writing results similar in spirit to FaxBn’s force law in these situations. For 
simplicity, the case of temperature fields is discussed in detail below, but final results 
are given for the cases of both temperature and concentration fields. 

It is assumed that the continuous-phase fluid in the absence of the droplet is 

to vsu * 0. 
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quiescent and possesses a known temperature field T&). Introducing the droplet will 
disturb this distribution and result in temperature fields T(r) and P(r) outside and 
within the droplet respectively. If it is assumed that dc/dT = uf is constant over the 
range of temperatures encountered on the surface of the droplet, (29) may be 
rewritten as follows: 

The motion generated by the interface can, in general, influence the temperature 
distributions within and outside the droplet. However, if we make the further 
assumption that the Pbclet numbers for heat transfer within and outside the droplet 
are negligible, the convective heat-transport terms in the energy equations may be 
neglected in comparison to the conduction terms. In  the absence of sources or sinks, 
then T and 9 will satisfy Laplace’s equation, and the usual conditions of continuity 
of the temperature and normal energy flux are satisfied on 8,. To avoid diversion 
from the theme of this section, the following useful result is stated here (the 
derivation of this result via spherical harmonics solutions for T and 5? is relegated 
to the Appendix) : 

Here, the subscript 0 stands for evaluation at the location of the droplet centre and 
/3 = &/k is the ratio of the thermal conductivity of the droplet phase to that of the 
continuous phase as defined in the introduction. 

Thus, the following result may be written for the Stokes force on a fluid droplet 
inserted and held fixed in a continuous-phase fluid which, in the undisturbed state, 
is quiescent, and possesses an arbitrary harmonic temperature field T,(r) : 

The result is further restricted by the requirement that the temperature fields within 
and outside the droplet continue to be harmonic after insertion of the droplet. The 
result may be considered a useful first approximation for the case of small values of 
the P6clet numbers within and outside the droplet. 

When the capillary force arises due to a gradient in concentration of a species which 
is transferred across the interface, the result for the force is modified slightly: 

Here, C,(T) is the harmonic concentration field in the undisturbed continuous phase 
fluid, and d = dn/dC. K is an equilibrium constant, being the ratio of the concen- 
tration in the droplet phase to that in the continuous phase at the interface S,. In this 
case, /3 = B / D  is the ratio of diffusivities of the solute in the droplet and continuous 
phases. 

When the undisturbed continuous phase is in Stokes flow with an arbitrary u,(r) 
and the droplet translates with a velocity U, a result may be given for the 
hydrodynamic force on the droplet by superposition. Since the temperature fields still 
have to be harmonic, it has to be assumed that convective transport of energy still 
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is negligible compared to conduction. In this case, one can add the results for the 
force from (32) and (1 ) to arrive at the following final result : 

The result for C,(r) is analogous and, therefore, omitted. 
The analogy of (32) to (2) is evident. In fact, (2) is a special case of the more general 

result when VT,(r) is simply a constant vector everywhere. It is interesting to note 
that, guided purely by intuition, (34) and variants thereof have been used without 
proof by this author and his collaborators in constructing elementary approximations 
in capillary problems. Examples may be found in Meyyappan, Wilcox & Subramanian 
(1983) and Meyyappan & Subramanian (1984). 

One might note that in this section attention has been restricted to linear problems 
for the temperature (and concentration) fields. In  such cases, as pointed out by 
Acrivos (personal communication, 1984), the isotropy of the sphere can be invoked 
to show that the force on the sphere can only depend linearly on (VT,), when T and 
p satisfy Laplace’s equation. This will lead immediately to (32) or the analogous (33) 
since the constant of proportionality between P and (VT,), can be obtained from the 
known solution of Young et al. for the case of a constant VT, field. Of course, the 
more general (29) or (30) are not restricted by the requirement that the T and p fields 
satisfy linear equations in general, or Laplace’s equation in particular. 

I am grateful to Professor John B. McLaughlin for helpful discussions. This 
research was supported by the Microgravity Sciences Division of the National 
Aeronautics and Space Administration through NASA Contract NAS8-32944 from 
Marshall Space Flight Center to Clarkson University, and by NSF Grant CPE-8315048. 

Appendix 
Here, (31) is derived for an arbitrary harmonic field Tm(r),  given that T and p are 

harmonic functions. The field T,(r) possesses no singularities in the region of space 
occupied by the droplet. Therefore, in a spherical polar coordinate system ( r ,  0, q5) 
centred in the droplet, with t9 being the polar angle measured from some fixed but 
arbitrary direction, one can write, quite generally, 

Here, the surface spherical harmonic J’y(0, q5) is defined as follows: 
n 

m-o 
c(0,q5) = Z (Cr cosmq5+Dy sinmq5)c(a). (A 2 4  

Here, = case. (A 2b) 

The Ferrer functions q ( a )  are defined in MacRobert (1967), and are related to the 
Associated Legendre functions by a complex multiplicative constant. Any general 
solution of Laplace’s equation in a domain including the origin may be written in the 
form of (A 1) and the constants C: and DZ may be determined by the use of standard 
orthogonality relationships. 

fields is as follows. Here, to avoid 
repetition, the slightly more general problem for species concentration is posed. At 

The usual problem for harmonic T and 
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the spherical boundary S, of the droplet, equilibrium is assumed between +' 
phases, and it is required that the normal flux of species across the inte. 
continuous (normal flux of energy if T is temperature) : 

V2T = 0, V2P = 0, (A 3) 

T+T,(r) as r+m, (A 4 4  

pis bounded at r = 0,  

KT = P, 

ar 

In (A 4c) ,  if T is the temperature field, K = 1,  and B = k/k would be the ratio of 
thermal conductivities. If T is the species concentration, K would be an equilibrium 
constant and 

The solutions of (A 3)-(A 4) may be represented in a straightforward manner in 
spherical harmonics. When account is taken of all the boundary conditions, recognizing 
that T,(r) satisfies Laplace's equation, one obtains : 

= b / D  would be the ratio of diffusivities. 

where 
n 

m-o 
GE = (A: cosm$+Br s inm$)q(s )  (A 7) 

also are spherical harmonics. 
The constants A: and B r  are related in a simple manner to Cr and DE: 

It is a straightforward matter now to establish the following result by direct 
integration : 

Here, ( i , j ,  k) are the usual base vectors in a rectangular Cartesian coordinate system 
which shares the same origin as the spherical polar coordinate system chosen earlier. 
The vector k is the unit vector along the z-axis which is the axis from which the polar 
angle O is measured. 

It also is straightforward to establish that 

a(VT,), = - [q i+ 0 : j - q  k]. (A 10) 

Equation (31) follows directly from equations (A 9) and (A lo), upon setting K = 1. 
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